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A quadratic form over the integers is a quadratic homogeneous polynomial,

Q(X1, . . . , Xd) :=
∑
i≤j

aijXiXj ∈ Z[X1, . . . , Xd].

The natural question is: For which n ∈ Z is Q(x1, . . . , xd) = n solvable in Z?

For example, a famous result of Gauss states that every n ≥ 0 is a sum of four squares. In general,
however, there is no simple answer, leading to a rich and fascinating theory.

In the seminar, we study Q by studying all its reductions Q mod N, N ∈ N. In other words,
we will consider Q over the p-adic integers Zp for all primes p and see how its p-wise properties
determine its behavior over Z. Over Q, the local information is completely su�cient:

Theorem (Hasse�Minkowski). The equation Q(x1, . . . , xd) = n is solvable in Q if and only if it

is solvable in R and all p-adic �elds Qp.

The condition (existence of solutions in R and all Qp) is clearly necessary, the converse is the
so-called local-global principle for quadratic spaces. Looking for solutions in Z instead, we still
obtain

Theorem. Assume that Q(x1, . . . , xd) = n is solvable in R and in all p-adic integer rings Zp. Then

there exists a quadratic form Q′ ∈ Z[X1, . . . , Xn] in the genus of Q such that Q′(x1, . . . , xn) = n
is solvable in Z.

Q and Q′ are said to be of the same genus if they are isomorphic mod N for all N . Clearly,
one cannot discriminate between forms of the same genus through congruence information. For
example, X2 +27Y 2 and 4X2 +2XY +7Y 2 are in the same genus, but the second form represents
7 while the �rst does not.

Once we group forms by genus, however, we even get a full solution count from all localizations!
This result, a highlight of number theory, will be the culmination point of the seminar.

Theorem (Smith�Minkowski�Siegel 1935). Assume that Q as above is positive de�nite. Let

Q = Q1, . . . , Qk be representatives for the forms in the genus of Q and let n ∈ N. Then

1∑k
i=1 # Aut(Qi)

k∑
i=1

#{x ∈ Zd primitive | Qi(x) = n}
# Aut(Qi)

= α∞(n)
∏
p

αp(Q,n).

The factors on the RHS are the so-called local p-adic representation densities. The seminar will
conclude with some applications of this formula.

Talks

The seminar follows the books A course in Arithmetic by J. P. Serre (Talks 1�6) and Quadratische

Formen by M. Kneser (Talks 7�12). The p-adic numbers will be omnipresent throughout, so some
prior familiarity with them will be helpful.

Talk 1: Quadratic Reciprocity

Present the material from [3, Chapter I]. The two central results are the Chevalley Theorem (�2)
and the quadratic reciprocity law (�3). This settles the classi�cation of quadratic spaces over Fp.

Talk 2: p-adic numbers
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Present the material from [3, Chapter II]. After introducing the p-adic numbers Qp and their ring
of integers Zp, prove the fundamental results on the possibility of lifting solutions (Theorem 1 and
Corollaries 1�3). Also present the description of Q×p /(Q×p )2 from �3.3.

Talk 3: Hilbert Symbol

Present the material from [3, Chapter III]. Give the de�nition of the Hilbert Symbol and its
properties (�1.1). State the results from �1.2 and give an indication of their proof. (For time
reasons, you probably have to omit some details here.) State and prove the product formula
(Theorem 3).

Talk 4: Quadratic Forms

Present the material from [3, Chapter IV.1], except for Theorem 2, which is part of the next talk.
The main results are the existence of an orthogonal basis (Theorem 1), the possibility to extend
isometries (Theorem 3) and the cancellation result (Theorem 4).

Talk 5: Forms over Qp

Present the material from [3, Chapter IV.2]. The main result is the classi�cation of quadratic
spaces over Qp (Theorem 7) through their 3 invariants: dimension, discriminant and Hasse invari-
ant. Theorem 2 from IV.1 will be needed to prove the well-de�nedness of the Hasse invariant.

Talk 6: Forms over Q � Hasse�Minkowski

Present the material from [3, Chapter IV.3]. The main results are the Hasse�Minkowski Theorem
and the classi�cation of quadratic spaces over Q (Theorem 9).

Talk 7: Quadratic Lattices

The reference is [2, �20]. De�ne quadratic forms over Z, the discriminant and the dual lattice.
State and prove the �niteness of quadratic lattices with given rank and discriminant (Propositions
20.1 and 20.2). Give some examples for the classi�cation in low rank and discriminant as in �20.3
� �20.7 or as for binary forms in [4, p. 62] or [1, p. 29].

Talk 8: Genus and Representations

The reference is [2, �21, �22]. De�ne the genus of a lattice (�21) and prove the �niteness of the
number of isometry classes in a genus (Proposition 21.3). Prove the fundamental result that a
number is represented by a form of the genus if and only if it is represented locally at all primes
(Proposition 22.1). Use this to settle the integral representability problem in examples where
there is only one form in the genus, for example the cases Propositions 22.3�22.5. Some binary
examples are listed in [1, Chapter 1, �2, Equation (2.28)].

Talk 9: Adelic description of the genus I

The aim of this talk is to introduce some adelic methods that go into the Smith�Siegel�Minkowski
Theorem later. The reference is [2, �30��32], but only the trivial case of L = {0} is considered.

Introduce the ring of adeles A of Q as a topological ring. Explain how to topologize Af -points of
varieties such as GLn(A) or O(A⊗ V ). Show that there is a bijection

Genus(M) = O(V )\O(Af ⊗ V )/KM

where KM ⊆ O(Af ⊗ V ) is the stabilizer of M . To motivate the bijection you may also recall the
simpler but analogous bijections

GLn(Af )/GLn(Ẑ) = {lattices Λ ⊆ Qn}

and GLn(Q)\GLn(Af )/GLn(Ẑ) = {?}. The latter is because the class number of Q is 1, showing
that the de�nition of the genus is analogous to the de�nition of the class group.

Finally, assuming that M is positive de�nite, de�ne the mass of a genus.

Talk 10: Adelic description of the genus II
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The reference is [2, �30��32]. De�ne what it means for a lattice to represent the other (De�nition
30.1). Give the adelic description of the genus of a representation, introduce the notion of a Haar
measure on O(WA) as in Proposition (31.11) and deduce Formula (32.2), relating the measure
with representation numbers,

µ(O(W )/O(WA)) = µ(OA(W,M)) ·
∑
k

aj(L,Mk)

|O(Mk)|
.

Talk 11: The Smith�Minkowski�Siegel Theorem

The reference is [2, �32��33]. Begin with Formula (33.2), relating the mass of a representation
genus to the mass of the principal genus. Explain the normalization of the Haar measure as in
Proposition (32.6) and (32.7). State the relation with representation densities (33.5) and �nally
the Smith�Minkowski�Siegel Theorem (33.6).

Talk 12: Applications

The reference is [2, �33 and �35]. Give some applications of the Smith�Minkowski�Siegel Theorem,
as in (33.7), (33.8) and �35.
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